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We consider a general class of Glauber dynamics reversible with respect to the
standard Ising model in Zd with zero external field and inverse temperature b

strictly larger than the critical value bc in dimension 2 or the so called ‘‘slab
threshold’’ b̂c in dimension d \ 3. We first prove that the inverse spectral gap in
a large cube of side N with plus boundary conditions is, apart from logarithmic
corrections, larger than N in d=2 while the logarithmic Sobolev constant is
instead larger than N2 in any dimension. Such a result substantially improves
over all the previous existing bounds and agrees with a similar computations
obtained in the framework of a one dimensional toy model based on mean cur-
vature motion. The proof, based on a suggestion made by H. T. Yau some years
ago, explicitly constructs a subtle test function which forces a large droplet of
the minus phase inside the plus phase. The relevant bounds for general d \ 2 are
then obtained via a careful use of the recent L1–approach to the Wulff con-
struction. Finally we prove that in d=2 the probability that two independent
initial configurations, distributed according to the infinite volume plus phase
and evolving under any coupling, agree at the origin at time t is bounded from
below by a stretched exponential exp(−`t), again apart from logarithmic
corrections. Such a result should be considered as a first step toward a rigorous
proof that, as conjectured by Fisher and Huse some years ago, the equilibrium
time auto-correlation of the spin at the origin decays as a stretched exponential
in d=2.
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1. INTRODUCTION

In a finite domain, the reversible Glauber dynamics associated to the Ising
model relaxes exponentially fast to its equilibrium measure. Nevertheless,
this simple statement hides a wide range of behaviors depending on the
temperature, the domain and the boundary conditions.

In the uniqueness regime (when the temperature is large enough), the
speed of relaxation is uniform with respect to the domains and the bound-
ary conditions. We refer to Martinelli [Ma] for a complete account of this
theory. The occurrence of phase transition drastically modifies the behavior
of the dynamics and new physical features slow down the relaxation;
among those, the nucleation and the interface motions. Metastability is
characteristic of these slow phenomena since the system is trapped for a
very long period of time in a local equilibrium. In this case, the relaxation
mechanism is so slow that the time of nucleation can be expressed in terms
of equilibrium quantities. In particular, it was proven by Martinelli (see,
e.g., [Ma] and references therin) that for free boundary conditions the
asymptotic of the spectral gap with respect to the size of the domains is
related to the surface tension and the main mechanism driving the system
to equilibrium is nucleation of one phase inside the other. A complete
picture of the nucleation process in Z2 in the framework of metastability
was obtained by Schonmann and Shlosman in [SS2].

In this paper, we are interested in a different regime in which the
relaxation to equilibrium is driven by the slow motion of the interfaces.
This is the case of the Ising model in a large box with plus boundary con-
ditions. When a droplet of the minus phase is surrounded by the plus
phase, it tends to shrink according to its curvature under the action of the
non-conservative dynamics on the spins close to the interface. This subtle
phenomenon has been studied rigorously only in rare instances: by Spohn
[Sp] in the case of Ising model at zero temperature (see also Rezakhanlou,
Spohn [RS]), by Chayes, Schonmann, Swindle [CSS] for a variant of this
model and by De Masi, Orlandi, Presutti, Triolo [DOPT1, DOPT2] for
the Kac–Ising model. Notice also that the motion by mean curvature plays
a key role in the coarsening phenomenon, as it has been shown recently
by Fontes, Schonmann, Sidoravicius [FSS]. For positive temperatures,
a mathematical derivation! of similar results seems to be more challenging.

A way to capture some insights into the slow relaxation driven by
interface motion is to estimate spectral quantities related to the generator
of the Glauber dynamics. We prove that for any dimension d \ 2, in the
phase transition regime and with plus boundary conditions, the logarithmic-
Sobolev constant for a domain of linear size N diverge at least like N2

(up to some logarithmic corrections). This can be considered as a first

208 Bodineau and Martinelli



characterization of the slow down of the dynamics and is in agreement with
the heuristics predicted by the motion by mean curvature. In the same
setting but d=2, we prove that the inverse of the spectral gap grows at
least like N (up to logarithmic corrections). In dimension d \ 3 our argu-
ment fails to produce a result on the divergence of the spectral gap.

Let us stress that we have not been able to derive matching upper
bounds; the best existing bounds have been proved only in d=2 and are of
the form exp(`N (logN)2) (see [HW]). However, an exact computation
for a toy model based on mean curvature motion seems to confirm that the
polynomial asymptotics we obtain are correct (see Section 7). The proof
boils down to bound the variational formula for the Poincaré and the
Log–Sobolev inequalities by choosing an appropriate test function. This
reduces the problem to a computation under the equilibrium Gibbs measure.
The main difficulty is to recover polynomial bounds by using only the
exponential estimates provided by the equilibrium theory of phase segrega-
tion (see [BIV] and references therein). This is achieved by the choice of a
subtle test function which was suggested some years ago by H. T. Yau.

The second part of the paper (Section 6) applies the result on the lower
bound on the inverse of the spectral gap to investigate the relaxation in
the infinite domain Z2. Thanks to an heuristic argument based on the
motion by mean curvature, Fisher and Huse [HF] conjectured that the
equilibrium time auto-correlation of the spin at the origin decays as a
stretched exponential exp(−`t) in d=2. We provide a first step towards a
rigorous proof by showing that a dynamical quantity strictly related to the
auto-correlation cannot relax faster than exp(−`t).

2. THE MODEL AND THE MAIN RESULTS

In this section we define the model and fix some useful the notation,
recall some basic facts about the Ising model below the critical point and
finally state our two main results.

2.1. The Standard Ising Model

Let L be a generic finite subset of Zd, with d \ 2. Each site i in L

indexes a spin si which takes values ±1. The spin configurations {si}i ¥ L
have a statistical weight determined by the Hamiltonian

H s̄(s)=− 12 C
i, j ¥ L
|i− j|=1

sisj− C
i ¥ L, j ¥ Lc

|i− j|=1

sis̄j ,

where s̄={s̄i}i ¥ Lc are boundary conditions outside L.
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The Gibbs measure associated to the spin system with boundary
conditions s̄ is

-s={sx}x ¥ L, m s̄L(s)=
1
Z s̄b, L

exp(−bH s̄(s)),

where b is the inverse of the temperature (b=1
T) and Z s̄b, L is the partition

function. If the boundary conditions are uniformly equal to 1 (resp. −1),
the Gibbs measure will be denoted by m+L (resp. m−L ).

The phase transition regime occurs at low temperature and is charac-
terized by spontaneous magnetization in the thermodynamic limit. There is
a critical value bc such that

-b > bc, lim
LQ Z

d
m+L (s0)=− lim

LQ Z
d

m−L (s0)=m
g > 0. (2.1)

Furthermore, in the thermodynamic limit the measures m+L and m−L con-
verge (weakly) to two distinct Gibbs measures m+ and m− which are mea-
sures on the space {±1}Z

d
. Each of these measures represents a pure state.

In dimension d \ 3, we also denote by b̂c \ bc the ‘‘slab critical point’’ (see
[ACCFR] and [Pi]) which is conjectured to coincide with bc. For conve-
nience we set b̂c=bc in dimension 2. Our proofs rely on results of equilib-
rium phase coexistence for the Ising model which are restricted to values
b > b̂c (for technical reasons).

The next step is to quantify the coexistence of the two pure states
defined above. Due to the lattice structure, the surface tension is anisotropic.
Let L={−N,..., N}d, let nF be a vector in Sd−1 such that nF · eF1 > 0 and let s̄

be the following mixed boundary conditions

-i ¥ Lc, s̄i=˛
+1, if nF · i \ 0,
−1, if nF · i < 0.

The partition function with mixed boundary conditions is denoted by
Z ±b, N(nF) and the one with boundary conditions uniformly equal to +1
by Z+b, N.

Definition 2.1. The surface tension in the direction nF ¥ Sd−1, with
nF · eF1 > 0, is defined by

y(nF)= lim
NQ.

−
(nF, eF1)
Nd−1

log
Z ±b, N(nF)
Z+b, N

. (2.2)

We refer to Messager, Miracle-Solé and Ruiz [MMR] for a derivation
of the thermodynamic limit (2). Associated in a natural way to the surface
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tension is the Wulff shape which describes the optimal shape of a droplet of
the minus phase immersed in the plus phase.

Definition 2.2. The Wulff shape is the convex set in Rd given by

W= 3
nF ¥ S

d−1

{x ¥ Rd; x · nF [ y(nF)}. (2.3)

The Wulff shape with volume 1 is denoted by Ŵd. Finally in what
follows we will choose for simplicity the finite set L as the domain WN=
NŴd 5 Zd, instead of a cube of side N. The corresponding Gibbs measure
on WN with+ boundary conditions will be denoted by m+N.

2.2. The Glauber Dynamics

The stochastic dynamics we want to study is defined by the Markov
generator given by

(L+
Nf)(s)= C

x ¥WN

c+x (s) Nxf(s)

where the values of s outside WN are kept fixed identical to +1 and
Nxf(s)=[f(sx)−f(s)]. On the flip rates cx(s) we assume

(i) k−1 [ c+x (s) [ k for some k and any x, s
(ii) reversibility w.r.t. the Gibbs measure m+N

(iii) finite range

Remark 2.1. It is possible to check (see, e.g., [Li] or [Ma]) that it
is possible to extend the above definition of the generator L+

N directly to
the whole lattice Zd and get a well defined Markov process on W :=
{0, 1}Z

d
. We will refer to the latter as the infinite volume Glauber dynamics.

The Dirichlet form associated to L+
N takes the form

E+N(f, f)= C
x ¥WN

m+N(cx(s) |Nxf|
2)

and, thanks to assumption (i) on the flip rates it is uniformly bounded from
above and from below by multiples of

m+N 1 C
x ¥WN

|Nxf|22 :=m+N(|Nf|
2).

The variance of f w.r.t. m+N will be denoted by m+N(f, f).
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Two key quantities measure the time scale on which relaxation to
equilibrium occurs. The first one, denoted by SN, is the inverse of the spec-
tral gap of the generator, while the other one is the logarithmic Sobolev
constant LN. They are both characterized by a variational principle in that
they are the optimal constants in the Poincaré inequality

m+N(f, f) [ cE
+
N(f, f), -f ¥ L2(dm+N)

and in the logarithmic Sobolev inequality

m+N(f
2 log f2) [ cE+N(f, f), -f ¥ L2(dm+N) with m+N(f

2)=1

respectively. As it is well known the quantity SN measures the relaxation
time in an L2(dm+N) sense while LN measures the relaxation time in an L.

sense (worst case for the initial condition). More precisely, if P (+, N)t denotes
the Markov semigroup generated by L+

N and f is an arbitrary function
with m+N(f)=0 then

m+N([P
(+, N)
t f]2) [ m+N(f

2) exp 1− t
SN
2 .

In many cases, e.g., at high temperature the two quantities are of the
same order but it may very well happen that they are quite different. We
will argue later on that the Ising model below the critical temperature is
actually one of these cases.

2.3. Main Results

We are finally in a position to state our main results.

Theorem 2.1. Assume d=2 and b > bc. There exists a constant o

depending on b such that

lim
NQ.

(logN)o

N
SN=+. (2.4)

Remark 2.2. As we already pointed out in the introduction, in
dimension greater than two our choice of the test function to be inserted in
the Poincaré inequality does not provide any non trivial information.

The next result concerns the large N behavior of the logarithmic
Sobolev constant.
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Theorem 2.2. Assume d \ 2 and b > b̂c. There exists a constant o

depending on b and d such that

lim
NQ.

(logN)o

N2
LN=+. (2.5)

Finally we investigate in d=2 the relaxation in the plus phase for the
infinite volume dynamics. For this purpose, let us consider an arbitrary
coupling of the Glauber dynamics in the infinite volume Z2. The two pro-
cesses at time t are denoted by (sg(t), s̃w(t)), where (g, w) are the initial
spin configurations. The joint expectation of the process is denoted by Ê.
The initial conditions will in general be chosen w.r.t. the product measure
dm̂+(g, w)=dm+(g) dm+(w), where m+ is the Gibbs measure of the+ pure
phase.

Theorem 2.3. There exist positive constants C1, C2 and o indepen-
dent of the choice of the coupling such that

-t > 0, F dm̂+(g, w) Ê(sg0(t) ] s̃w0 (t)) \ C1 exp(−C2 `t (log t)o). (2.6)

Remark 2.3. Although we believe that the quantity considered in
the theorem is a good measure of the time auto–correlation in the plus
phase of the spin at the origin, the latter is unfortunately only bounded
from above by the LHS of (2.6). We have in fact

m+((Pt(s0)−mg)2)=m+ 11Pt(s0)−F dm+ P̃t(s0)2
22

=F dm+(g) 11F dm+(w) Ê(sg0(t)− s̃w0 (t))2
22

[ 4 F dm̂+(g, w) Ê(sg0(t) ] s̃w0 (t)).

Remark 2.4. A related result at b=+. was proved recently in
[FSS] for the zero temperature dynamics (see theorem 1.2 there).

3. LARGE DEVIATIONS

In this section we recall some results on the large deviations for the
Gibbs measure m+N when b > b̂c. Our proofs rely on a weak description of
phase segregation in terms of L1-norm. The reader is referred to [BIV] for
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a survey on phase coexistence and a complete list of references. The
rigorous implementation of the L1-approach in two dimensions is detailled
in the appendix (Section 8).

We consider our microscopic Ising model embedded in Ŵd. Let ŴN=
1
N Z

d 5 Ŵd and let K be a mesoscopic scale (eventually depending on N).
The domain Ŵd is partitioned into boxes B̂N, K, each of them containing Kd

sites of ŴN:

j ¥ Zd, xj=j
K
N

¥ ŴN, B̂N, K(xj)=xj+6−
K
2N
,
K
2N
6d.

Let BK(Nxj) be the microscopic counterpart of B̂N, K(xj), i.e., the sites of
ŴN in B̂N, K(xj). These boxes are centered on the sites of ŴN, K=
K
N Z

d 5 Ŵd. As the domain is not regular some boxes may not fit inside
ŴN, therefore at the boundary we consider a relaxed notion of boxes.

Finally, the local magnetization is defined as a piece-wise constant
function on the partition {B̂N, K(xj)}:

-y ¥ B̂N, K(xj), MN, K(y)=
1
|BK |

C
i ¥ BK(Nxj)

si. (3.7)

The local order parameter MN, K(y) characterizes the local equilibrium of
the mesoscopic box containing y. The key result concerning the local order
parameters is a trivial consequence of the results obtained by Pisztora [Pi]
and it is based on the following coarse grained description. To each box
B̂N, K(xj) we associate a mesoscopic phase label uN, K(xj) taking values in
{−1, 0, 1}

uN, K(xj)=1{|MN, K(xj)−m*| [ 14 m*}−1{|MN, K(xj)+m*| [ 14 m*}. (3.8)

The distribution of the variables {uN, K(xj)} under m+N is dominated by
Bernoulli Percolation. The following result was derived in [Pi] for d \ 3
and is proved in the appendix for d=2.

Theorem 3.1. For any b > b̂c there exists cb > 0 and c ¥ ] 0, 1[ such
that the following holds uniformly in N:

-{x1,..., xa} ¥ ŴN, K, m+N(uN, K(x1)=0,..., uN, K(xa)=0) [ (rK)
a, (3.9)

with rK=exp(−cbKc).
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Remark 3.1. For the next results (Propositions 3.1–3.3) to hold true
the mesoscopic scale K has to be chosen just large enough (depending on b

and on some extra parameter d). However in the next sections it will be
essential to relate K with the basic scale N via the scaling relation
K % (logN)1/c and therefore we will adopt this choice right away and
denote the corresponding mesoscopic phase labels simply by uN. Moreover,
since the blocks with label 0 will play an important role in the proof of the
main results, they will be referred to as the bad blocks.

In order to state the other results on the large deviations of m+N we
need to introduce some more notation. For any d > 0, the d-neighborhood
of v ¥ L1(Ŵd) is defined by

V(v, d)={vŒ ¥ L1(Ŵd) | ||vŒ−v||1 < d}.

Let O be an open set containing Ŵd. The set of functions of bounded
variation in O taking values in {−1, 1} and uniformly equal to 1 outside
Ŵd is denoted by BV(Ŵd, {±1}) (see [EG] for a review). For a given
a > 0, the set of functions in BV(Ŵd, {±1}) with perimeter smaller
than a is denoted by Ca. Finally we define the Wulff functional Wb on
BV(Ŵd, {±1}) as follows. For any v ¥ BV(Ŵd, {±1}), there exists a gen-
eralized notion of the boundary of the set {v=−1} called reduced bound-
ary and denoted by “gv. If {v=−1} is a regular set, then “gv coincides with
the usual boundary “v. Then one defines

Wb(v) :=F
“*v

y(nx
0 ) dHx,

nx
0 where Hx is the (d−1) dimensional Hausdorff measure. The Wulff
functional Wb can be extended on L1(Ŵd) by setting

Wb(v)=˛F“*v y(nx
0 ) dHx, if v ¥ BV(Ŵd, {±1}),

. , otherwise.

(3.10)

For any m in [−mg, mg[, the Wulff variational problem can then be stated
as,

min 3Wb(v) | v ¥ BV(Ŵd, {±1}), :F
Ŵ
d
mgvr dr : [ m4 . (3.11)

If we denote by Dm the set of minimizers of (3.11) it has been proven by
[Ta] that in Rd the minimizer is unique up to translations and given by
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suitable dilation of the Wulff shape (2.3). In particular the interfacial
energy of Ŵd is given by

yg=Wb(Ŵd)=F
“Ŵ

d
y(nx

0 ) dHx. (3.12)

All that being said the results we are going to use can be summarized
as follows. We recall that from now K=(b logN)1/c where b is a constant
large enough (see remark 3.1).

Proposition 3.1. There exists a constant C(b) > 0 such that for
any d > 0

-a > 0, lim sup
NQ.

1
Nd−1

log m+N(uN ¨V(Ca, d)) [ −C(b) a,

where V(Ca, d) is the d-neighborhood of Ca in L1(Ŵd).

This proposition tells us that only the configurations close to the
compact set Ca have a contribution which is of a surface order.

The precise asymptotic related to surface tension are

Proposition 3.2. Uniformly over d > 0

lim inf
NQ.

1
Nd−1

log m+N(||uN+1||1 [ d) \ −yg.

Proposition 3.3. For all v in BV(Ŵd, {±1}) such that Wb(v) is
finite and for d > 0

lim sup
NQ.

1
Nd−1

log m+N(||uN−v||1 [ d) [ −Wb(v)+e(d),

where e(d) vanishes as d goes to 0.

4. THE TEST FUNCTION

In this section we define the test function that, if plugged into the
Poincaré and logarithmic Sobolev inequalities, will prove theorems (2.1)
and (2.2). As we mentioned in the introduction, the form of function
described below was suggested by H. T. Yau.

216 Bodineau and Martinelli



Fix l ¥ ] 12 yg, yg[, where yg is defined in (3.12). Let g be a smooth non
increasing function such that

g(s)=˛1, if s [
−mg

2
,

0, if s \
−mg

4
.

The mesoscopic scale K is chosen equal to (b logN)
1
c, where c was

introduced in (8.42) and b is a constant which will be fixed later. The test
function f has the following expression:

f(s)=exp 1lK
d

N
C
j
g(MN, K(xj))2 , -s ¥ {−1, 1}WN. (4.13)

The factor Kd stands for the volume of the boxes BK which equals to Kd

(with the exception of some boxes along the boundary). Notice that f is a
non increasing function of the spins.

There are three main features of f that make it quite effective. These
are:

(i) The variance of f almost coincides with m+N(f
2) or, put it in

another way, m+N(f
2)± m+N(f)

2;

(ii) The entropy of f2 w.r.t. to m+N is of order Nd−1;

(iii) Let us denote by m+, fN the weighted measure
dm+, fN

dm+N
= 1

Z+, fN

f2 where
Z+, fN :=m+N(f

2). Then under m+, fN the typical number of non zero terms in
|Nf|2 is of the order of Nd−1.

It is clear that once these properties are established then the proof of
Theorems 2.1 and 2.2 should follow quite easily.

Intuitively the proof of (i), (ii) and (iii) is based on the following simple
heuristic. The function f assigns an exponential weight to the configura-
tions with a large number of mesoscopic boxes with label uN=−1 because
of the choice of the function g. According to the large deviation theory,
among the configurations favored by f, those with the largest m+N weight
form a Wulff droplet of a certain size. Therefore, to compute m+N(f) or
m+N(f

2), we will need to compare, for a given Wulff droplet, the gain given
by the exponential factor in f or f2 with the m+N probability of creating the
droplet itself. It turns out, due to the precise choice of the parameter l, that
the balance for f is negative and no Wulff droplet will appear, while the
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balance is positive for f2 and the typical spin configurations under m+, fN
will consist of a Wulff droplet of the minus phase of volume %Nd. That
accounts for (i) and (ii). Given the above picture, it is also clear that (ii)
holds simply because the non zero terms in |Nf|2 come only from the bad
boxes, again because of the choice of the function g. The boundary of the
Wulff droplet produces O(Nd−1) of such boxes while the inside of the
droplet typically does not contain any bad box because of the choice of
the mesoscopic scale K. Were K be large but independent of N then we
would always have a density of bad boxes and the whole construction
would break down.

4.1. The Variance of f

We are first going to check that

lim
NQ.

m+N(f, f)
m+N(f

2)
= lim
NQ.

m+N(f
2)−m+N(f)

2

m+N(f
2)

=1. (4.14)

The function uniformly equal to −1 in Ŵd is denoted by −1. Let e > 0,
then

m+N(f
2) \ m+N(f

2 1{uN ¥V(−1, e)}) \ exp 12l
N
Nd(1− e)2 m+N(uN ¥V(−1, e)),

where we used the fact that if uN(x)=−1 then MN, K(x) < −
m*
2 . Proposi-

tion 3.2 implies that for N large enough

m+N(f
2) \ exp(Nd−1(2l(1− e)−yg−o(e))), (4.15)

where o(e) vanishes as e goes to 0.
Next we examine m+N(f) and prove that

lim
NQ.

1
Nd−1

log m+N(f)=0. (4.16)

The derivation of an upper bound for m+N(f) requires some technicalities.
First fix a constant a > l

C(b) where C(b) appears in Proposition 3.1. Then
Proposition 3.1 implies that for any d > 0

lim sup
NQ.

1
Nd−1

log m+N(f 1{uN ¨V(Ca, d)}) [ l−C(b) a < 0. (4.17)
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Then fix e > 0 and recall that Ca is compact for the L1 topology. According
to Proposition 3.3, for d small enough the set V(Ca, d) can be covered by a
finite union 1a

i=1 V(vi, ei) such that for any i [ a and N large enough

1
Nd−1

log m+N(uN ¥V(vi, ei)) [ −Wb(vi)+e , (4.18)

where ei is chosen small enough such that (4.18) holds. Noticing that

m+N(f) [ C
a

i=1
m+N(f 1{uN ¥V(vi, ei)})+m+N(f 1{uN ¨V(Ca, d)}), (4.19)

and combining (4.17) with (4.18), we get

m+N(f) [ C
a

i=1
exp(Nd−1(l |vi |−Wb(vi)+e(1+l)))+exp(Nd−1(l−C(b) a)),

where |vi | denotes the volume of the set {vi=−1}. To check that the spin
configurations in {uN ¥V(vi, ei)} have a number of minus blocks of the
order of Nd |vi |, it is enough to regularize vi by a smooth set (see Giusti
[Gi] Theorem 1.24).

By the very definition of the Wulff variational problem, for any
v ¥ BV(Ŵd, {±1})

Wb(v) \ yg |v| (d−1)/d \ yg |v|, (4.20)

where we have used the fact that |v| [ |Ŵd|=1. As l < yg,

m+N(f) [ a exp(Nd−1e(1+l))+1. (4.21)

Since e was arbitrary, this implies (4.16).
Combining (4.15), (4.16) and the fact that 2l > yg, we finally derive

(4.14) by choosing e small enough.

4.2. The Entropy of f 2

We will prove that

CNd−1 [ m+, fN (log f2)− log m+N(f
2), (4.22)

for a suitable constant C.
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Using the previous strategy, we check that for e > 0 and for N large
enough

m+N(f
2) [ C

a

i=1
exp(Nd−1(2l |vi |−Wb(vi)+e(1+l)))+1.

Inequality (4.20) implies

m+N(f
2) [ C

a

i=1
exp(Nd−1((2l−yg) |vi |+e(1+l)))+1,

[ a exp (Nd−1(2l−yg+e(1+l)))+1. (4.23)

It remains to check that for e > 0 and N large enough

m+, fN (log f2)=
2lKd

N
m+, fN 1 C

x ¥ ŴN, K

g(MN, K(x))2 \ (1− e) 2lNd−1. (4.24)

This is a consequence of the following estimate. For any e > 0 and N large
enough

(1−o(e)) m+N(f
2) [ m+N(f

21{uN ¥V(−1, e)}). (4.25)

Let F=(V(−1, e))c. First notice that

sup
v ¥F

{−W(v)+2l |v|} [ sup
v ¥F

{|v|(−yg+2l)} [ (−yg+2l)(1− e).

We proceed as before and cover the set F 5V(Ca, d) with a finite number
of neighborhoods. This implies that for any d > 0 and N large enough

m+N(f
21{uN ¥F}) [ a exp((−yg+2l+o(d))(1− e) Nd−1)+1.

On the other hand,

m+N(f
21{uN ¥V(−1, e)}) \ exp((−yg+2l) Nd−1).

Thus, for N large enough, we derive (4.25). This implies that

Kdm+N 1f2 1 C
x ¥ ŴN, K

g(MN, K(x))22 \ m+N(f
2 (1{uN ¥V(−1, e)}))(1− e) Nd.

The inequality (4.25) leads to

Kdm+N 1f2 1 C
x ¥ ŴN, K

g(MN, K(x))22 \ m+N(f
2)(1− e)(1−o(e)) Nd.
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Therefore (4.24) is complete. Combining (4.23) and (4.24), we obtain for N
large enough

m+, fN (log f2)− log m+N(f
2)

\ ((1−o(e)) 2l−(−yg+2l+e −(1+l))) Nd−1− log a,

\ (yg−o(e) 2l− e −(1+l)) Nd−1− log a.

For any b > bc (the true critical point) it is known that yg > 0. Thus, by
choosing e and eŒ small enough, we derive (4.22) for N large enough.

4.3. The Dirichlet Form of f

The Dirichlet form associated to f can be bounded as follows. There is
C1 > 0 such that for N large enough

m+N(|Nf|
2) [ C1l2Nd−3Kdm+N(f

2)=C1l2Nd−3(b logN)
d
c m+N(f

2), (4.26)

where K=(b logN)1/c. By Taylor expansion

|Nf|2= C
i ¥WN

|Nif|2= C
x ¥ ŴN, K

C
i ¥ BK(x)

|Nif|2

[ f2 14Kd l2

N2
||gŒ||2. 2 C

x ¥ ŴN, K

1{− m*2 [MN, K(x) [ −
m*
4 }

[ f2 14Kd l2

N2
||gŒ||2. 2 QN.

where QN denotes the number of blocks in WN with averaged magnetiza-
tion in [−m*2 , −

m*
4 ]. Using the notation m+, fN introduced in (ii) above we can

write

m+N(|Nf|
2) [ c1

l2Kd

N2
||gŒ||2. m+N(f

2) m+, fN (QN).

The estimate (4.26) will follow from the fact that for N large enough

m+, fN (QN) [ 2N
d−1. (4.27)

This boils down to check that

m+, fN (QN 1{QN > Nd−1}) [N
d exp(−cNd−1), (4.28)
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where c is a positive constant. As m+N(f
2) \ 1, we see that

m+, fN (QN 1{QN > Nd−1}) [ exp(2lNd−1) m+N(QN >N
d−1)
Nd

Kd
. (4.29)

Remember that the occurrence of bad blocks is dominated by Bernoulli
percolation with parameter rK=N−cbb. Therefore, for b large enough, it is
then quite simple to check that there is c > 2l such that for N large
enough,

m+N(QN >N
d−1) [ exp(−cNd−1).

Combining the previous bound with (4.29), we derive (4.28).

Remark 4.1. It would be possible to derive sharper estimates for
(4.27). One expects

m+, fN (QN) [ c
Nd−1

Kd−1
.

Nevertheless this would not be enough to derive an asymptotic for the
spectral gap and the Log–Sobolev constant without a logarithmic correc-
tion: on finite mesoscopic scales, we cannot control the test function.

5. PROOF OF THEOREMS 2.1 AND 2.2

We are in position to prove the first two main results.

5.1. Proof of Theorem 2.1

By definition

SN \
m+N(f, f)
E(f, f)

, -f

When f is equal to our test function f the above ratio can be bounded
from below using (4.26) and (4.14)

m+N(f, f)
E(f, f)

\
N3−d

C2(logN)o
, (5.30)

where C2=C1bd/cl2 and o=d
c. L

Clearly in dimension d \ 3 the test function does not provide any
information.
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5.2. Proof of Theorem 2.2

Fix d \ 2. By definition

LN \
m+N(f

2 log f2)
E+N(f, f)

, - f with m+N(f
2)=1

When f is equal to our (normalized) test function f the above ratio can be
bounded from below using (4.26) and (4.22)

m+N(f
2 log f2)

E+N(f, f)
\

N2

C3(logN)o
(5.31)

where C3=
C

C1b
d/c
l
2 and o=d

c. L

6. SLOW DOWN OF THE GLAUBER DYNAMICS IN TWO

DIMENSIONS

In this section we will derive some consequences from the two dimen-
sional upper bound on the inverse spectral gap for b > bc on the speed of
relaxation of the Glauber dynamics to its equilibrium. In particular we will
prove Theorem 2.3. The notation will be that fixed in Sections 2 and 3.

6.1. A First Finite Volume Bound

The first simple consequence of Theorem 2.1, is a bound on the
dynamical evolution of the test function (4.13) itself.

Proposition 6.1. For any N large enough,

-t > 0, m+N((P
(+, N)
t f)2) \ m+N(f

2) exp 1 −2t (logN)o

N
2 (1− exp(−clN)),

(6.32)

where cl is a positive constant depending on l and o was introduced in
Theorem 2.1.

This result provides a first (admittedly weak) clue on the relaxation
time of the dynamics. Let us assume that the Markov process generated by
L+N is attractive (see [Li] or [Ma]). This is the case if for example the flip
rates were those of the Metropolis or of the Heat Bath dynamics. Let
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B−
N(s) be the number blocks BK for which the spin configuration s in
{±1}WN has averaged magnetization in BK smaller than −m*4 . We set

YN(s)=exp 1l K
d

N
B−
N(s)2 ,

where K=(b logN)1/c and b, c are as in the previous section.
Since B−

N is a non increasing function of the spin variables, the mono-
tonicity inequalities for attractive processes imply

P (+, N)t (YN)(−) \ (m
+
N((P

(+, N)
t YN)2))1/2 \ (m

+
N((P

(+, N)
t f)2))1/2,

where the symbol (−) denotes the configuration in WN for which all the
spins are equal to −1. Inequality (6.32) implies that there is e > 0 such that
for all N large enough

P (+, N)t (YN)(−) \ exp 1 (2l− yg− e)
N
2
−t
(logN)o

N
2 .

On the other hand, as in the derivation of (4.16), one can check that

lim
NQ.

1
N

log m+N(YN)=0.

Therefore for any time smaller than N2

(logN)2o
the quantity P (+, N)t (YN(s))(−)

is much larger than the equilibrium expectation of YN: in the above special
sense the system has not yet relaxed.

Remark 6.1. It is important to observe that in the above reasoning
we have never used the information that the logarithmic Sobolev constant
is larger than %N2. Unfortunately we have not been able to establish any-
thing like proposition 6.1 for the entropy of ( P (+, N)t f )2 with the exponent
t (logN)

o

N replaced by t (logN)
o

N2
.

Proof. We set f=f−m+N(f). The spectral decomposition of L+
N

implies

m+N((P
(+, N)
t f)2)=F

.

0
dnf(J) exp(−2tJ),

where nf denotes the spectral measure associated to f. By Jensen inequality,

m+N((P
(+, N)
t f)2) \ 1F.

0
dnf(J)2 exp 1 −2t >

.

0 J dnf(J)
>.0 dnf(J)
2 .
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By definition of the spectral measure

m+N(f
2)=F

.

0
dnf(J) and E+N(f, f)=F

.

0
J dnf(J) .

Therefore the bound on the spectral gap (see (5.30)) implies that for N
large enough,

m+N((P
(+, N)
t f)2) \ m+N(f

2) exp 1 −2t (logN)o

N
2 . (6.33)

According to (4.16), there is a constant cl > 0 such that

m+N(f)
2 [ m+N(f

2) exp(−clN).

The former inequality combined with (6.33) leads to

m+N((P
(+, N)
t f)2) \ m+N(f

2) exp 1 −2t (logN)o

N
2 (1− exp(−clN)). (6.34)

This concludes the proof. L

6.2. Proof of Theorem 2.3

Proof. The first step is to reformulate the LHS of (2.6) in terms of
mesoscopic variables. For any site x ¥K Z2 we define zgx(t) to be the indi-
cator function of the event that the magnetization in the box BK(x) for the
process sg(t) in BK(x) is smaller than −m*4 . Then we have

m̂+(Ê(zg0(t) ] z̃w0 (t))) [ m̂+(Ê( , i ¥ BK(0), sgi (t) ] s̃wi (t)))

[K2m̂+(Ê( sg0(t) ] s̃w0 (t) )),

where we used the invariance by spatial translation in the last inequality.
Let N be a large integer, choose as usual the mesoscopic scale K=

(b logN)1/c and let L=N
K . By repeating the previous computation on a

coarse grained level, we get

m̂+ 1 Ê 1 C
i ¥WN 5KZ2

zgi (t) ] C
i ¥WN 5KZ2

z̃wi (t)22

[ m̂+(Ê(, i ¥WN 5KZ2, zgi (t) ] z̃wi (t)))

[ L2m̂+(Ê(zg0(t) ] z̃w0 (t))).
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Let now

B−
N(s

g
t )= C

i ¥WN 5KZ2
zgi (t).

The previous results imply

m̂+N(Ê(s
g
0(t) ] s̃w0 (t))) \

1
N2

m̂+(Ê(B−
N(s

g
t ) ]B−

N(s̃
w
t ))). (6.35)

In the second step, we are going to decouple the estimates of the joint
process. The main physical idea was already contained in the Fisher, Huse
paper [HF] and it goes as follows. We force one large droplet of the minus
phase of radius %N, around the origin in e.g. the initial distribution of sgt ,
by paying a price % exp(−ygN). This droplet should relax only in a time
scale proportional to its initial area and therefore, if N=A`t with A large
enough, the distribution of B−

N(s
g
t ) at time t given the above initial unlikely

event should be quite different from that of B−
N(s

w
t ). Apparently in order

to carry rigorously the above program one needs a much more precise
control on the life time of a droplet than what we have been able to obtain.
Actually that is not true and all what we need is something not more
precise than Proposition 6.1 (see Lemma 6.1 below).

From a technical point of view it is convenient to force the droplet of
the minus phase inside m+(g) in a ‘‘soft’’ way by simply inserting our test
function f2 defined in (4.13) with N %`t .

We write

m̂+(Ê(B−
N(s

g
t ) ]B−

N(s̃
w
t )))

\ m+(f2) exp(−2lN) F dm+, f
2
(g) dm+(w) Ê(B−

N(s
g
t ) ]B−

N(s̃
w
t ))

\ exp(−2ygN) F dm+, f
2
(g) dm+(w) Ê(B−

N(s
g
t ) ]B−

N(s̃
w
t )) (6.36)

Let a be a parameter in (0, 1) which will be fixed later on. Then

Ê(B−
N(s

g
t ) ]B−

N(s̃
w
t )) \ Ê(B−

N(s
g
t ) > aL2 ; B−

N(s̃
w
t ) [ aL2)

\ E(B−
N(s

g
t ) > aL2)−E(B−

N(s̃
w
t ) > aL2),
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where E refers to the marginal of Ê, i.e., to the usual Glauber dynamics.
Since the measure m+ is invariant with respect to the Glauber dynamics, we
can write

m+(E(B−
N(s

g
t ) > aL2))=m+(B−

N(s) > aL2) [ exp(−CaN),

where the final estimate follows from the theory of equilibrium phase
coexistence (see Propositions 3.3 and 3.1). In conclusion

m̂+(Ê(B−
N(s

g
t ) ]B−

N(s̃
w
t )))

\ exp(−2ygN)(m+, f
2
(E(B−

N(s
g
t ) > aL2))− exp(−CaN)).

It is at this stage that we are going to use the information on the spectral
gap. The necessary dynamical estimate is provided by the following Lemma
which will be derived later.

Lemma 6.1. We fix a > 0 such that the parameter (2l(a−1)+yg) is
negative. Then, for N large enough, the following inequality holds

-t > 0, F dm+, f
2
(g) E(B−

N(s
g
t ) > aL2) \

1
2

exp 1 −t (logN)o

N
2− exp(−ca, lN).

where ca, l > 0. We recall that L=N
K .

The previous Lemma implies that

m̂+(Ê(B−
N(s

g
t ) ]B−

N(s̃
w
t )))

\ exp(−2ygN) 11
2

exp 1 −t (logN)o

N
2− exp(−ca, lN)− exp(−CaN)2 .

By choosing N=`t (log t)o, we finally derive for t large enough

m̂+(Ê(B−
N(s

g
t ) ]B−

N(s̃
w
t ))) \ exp(−2yg

`t (log t)o−3`t ). L

Proof of Lemma 6.1. The proof relies on the dynamical estimate of
proposition 6.1.

Let

Yt=m+((Ptf)2)=m+([E(f(sgt ) 1B −N (sgt ) < aL2)+E(f(sgt ) 1B −N (sgt ) \ aL2)]
2).
(6.37)
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Thus from the estimate (4.15) and the FKG inequality we see that for e

small enough, a such that da — −(2l(a−1)+yg) > 0 and N large

E(f(sgt ) 1B −N (sgt ) < aL2) [ exp(alN)=exp 1 (2l−yg−da)
N
2
2

[ exp 1−da

2
N2 `m+N(f

2) [ exp 1−da

2
N2 `m+(f2).

Plugging the above inequality in (6.37), we get

Yt [ 2 m+([E(f(sgt ) 1B −N (sgt ) \ aL2)]
2)+2m+(f2) exp(−daN), (6.38)

with da > 0.
In the pure phase m+, the estimates obtained in Subsection 4.1 for the

variance and the Dirichlet form of f hold (see Proposition 6.2 below). Thus
Proposition 6.1 is also valid for an unbounded region and for N large
enough, we get

-t > 0, Yt \ m+(f2) exp 1 −2t (logN)o

N
2 (1− exp(−clN)).

Combining the previous inequality with (6.38), we get by using Cauchy
Schwartz inequality

m+(E(f2(sgt )) E(1B −N (sgt ) \ aL2))

\ m+(f2) 11
2

exp 1 −2t (logN)o

N
2− exp(−caN)2 .

The reversibility of the dynamics ensures that

m+(E(f2(sgt )) E(1B −N (sgt ) \ aL2))=m+(f2(g) E(1B −N (sg2t) \ aL2)).

This concludes the lemma. L

Proposition 6.2. In dimension d=2, for any b > bc then

-N, m+(f2)−m+(f)2 \ C
N

(logN)o
m+(|Nf|2),

where f is the test function introduced in (4.13).
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Proof. The upper bound (4.26) on the Dirichlet form is unchanged
under m+ since it boils down to estimating the number of bad blocks in the
region WN by using Bernoulli percolation. The lower bound (4.15) holds
for m+(f2) because FKG inequality implies m+(f2) \ m+N(f

2).
Thus it remains only to check that

lim sup
NQ.

1
N

log m+(f) [ 0. (6.39)

Let D̂=[−R, R]2 … R2, where R will be chosen large enough; in par-
ticular such that Ŵ 2 … [−R/2, R/2]2. Let CN be the set of spin configu-
rations which contain a *-connected circuit of + spins inside [−N, N]20
[−N/2, N/2]2 separating ([−N, N]2)c from [−N/2, N/2]2. As b > bc
and d=2, there is cb > 0 such that

m+(CcN) [ exp(−cbN).

By choosing R such that Rcb > 2l, we get

m+(f) [ m+(f 1CNR )+m+(CcNR) exp(lN) [ m+(f 1CNR )+exp((l−cbR) N).

Conditionning with respect to the + circuit which is the closest to
([−RN, RN]d)c and then using the fact that f is non-increasing, we
obtain by FKG

m+(f1CNR ) [ m+NR(f).

where m+NR denotes now the Gibbs measure in {−NR,..., NR}2 with +
boundary conditions.

At this point, we proceed as in Subsection 4.1. The only difference is
that the estimates are in L1(D̂) instead of L1(Ŵ2). This implies

lim sup
NQ.

1
N

log m+NR(f) [ sup
v ¥ BV(D̂, {±1})

{−Wb(v)+l |{v=−1} 5 Ŵ2|}.

To derive (6.39), it remains to check that the RHS is negative. Either |v| \ 1
in which case, we get

−Wb(v)+l |{v=−1} 5 Ŵ2| [ − yg |v| (d−1)/d+l |Ŵ2| [ −yg+l < 0,

or |v| < 1 and (4.20) applies

−Wb(v)+l |{v=−1} 5 Ŵ2| [ −yg |v|+l |v| < 0. L
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Remark 6.2. As a consequence of the proof of Proposition 6.2, we
see that the inverse of the spectral gap associated to the Glauber dynamics
in the cube [−N, N]2 grows faster than N

(logN)o.

7. A ONE DIMENSIONAL BIRTH AND DEATH PROCESS FOR

THE DROPLET EVOLUTION

In this section we discuss a simple one dimensional toy model which
mimics the random evolution of the volume of a droplet of the minus phase
in a large cube of side N in Zd under a Glauber dynamics with plus
boundary condition. The model goes as follows. Let a :=d−1

d and consider
a birth and death process on the integers L :={0, ..., Nd}, reversible with
respect to the measure

m(x) :=
1
Z

exp(−xa)

and with birth rate b(x)=(xK1)a, x < Nd. By reversibility the death rate
d(x) is given by

d(x+1) :=(xK1)a exp((x+1)a−xa), x > 0

One easily checks that the drift given by b(x)−d(x) is negative and pro-
portional to ax2a−1 for large x. The connection with the evolution of a large
droplet of the minus phase under the Glauber dynamics with plus bound-
ary condition in a large cube of side N in Zd is as follows. The variable x
represents the volume of the droplet at time t which is assumed to form a
compact set without holes. The rate b(x) should then be interpreted as the
rate with which a plus spin just outside the boundary of the droplet flips to
minus one and gets attached to the droplet while the rate d(x) represents
just the opposite process in which a minus spin at the boundary flips to
plus one and gets detached from the droplet. Clearly both these rates
should be proportional to the size of the boundary which, for roundish
shape, is of order of xa. Finally the drift comes from the reversibility con-
dition together with the fact that the equilibrium distribution of the droplet
volume should behave like the measure m(x) above according to the results
of section . Quite nicely the drift one gets out of these natural hypotheses is
of the same order of that prescribed by an evolution by mean curvature

d
dt
x1/d=−

1
x1/d
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Our goal now is to compute the precise asymptotic as NQ. of the inverse
spectral gap S(N, d) and logarithmic Sobolev constant L(N, d) of the above
process in order to test the accuracy of the bounds proved in Section 2.3.

Theorem 7.1. For any d \ 2 there exists a positive constant
k=k(d) such that

(i) N2

k [ L(N, d) [ kN2, -d \ 2

(ii) N
k [ S(N, 2) [ kN

(iii) S(N, d) [ k, -d \ 3

Proof. We apply the method of Hardy inequalities (envisaged in
[Mi]) in order to compute sharp upper and lower bounds on the quantities
of interest. We begin with the inverse spectral gap and define

B+(i) :=sup
x > i

1 C
x

y=i+1

1
m(y) b(y)
2 C
y \ x

m(y)

B−(i) :=sup
x < i

1 C
i−1

y=x

1
m(y) b(y)
2 C
y [ x

m(y)

B :=inf
i ¥ Z
(B+(i)KB−(i))

The measure m is extended on Z by setting m(x)=0 if x ¨ {0,..., Nd}. Then
we have (see Proposition 1.3 of ([Mi])

B
2
[ S(N, d) [ 4B

Part (ii) and (iii) of the theorem follow at once from the simple estimates

C
y \ x

m(y) % x1−a exp(−xa)

C
x

y=i+1

1
m(y) b(y)

% x1−2a exp(xa) (7.40)

where A % B means that there exists a universal constant k such that
1
k [

A
B [ k. We get in fact that for i ¥ {0,..., Nd}; B+(i) %N for d=2 and

B+(i) [ k uniformly in N for d \ 3, while B−(i) % i1−2a exp(ia) for any d.
Notice that B+(i)=. if i < 0 and B−(i)=. if i > Nd.
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We now turn to the analysis of the logarithmic Sobolev constant. We
define

A+(i) :=sup
x > i

1 C
x

y=i+1

1
m(y) b(y)
2 log 1 1

;y \ x m(y)
2 C
y \ x

m(y)

A−(i) :=sup
x < i

1 C
i−1

y=x

1
m(y) b(y)
2 log 1 1

;y [ x m(y)
2 C
y [ x

m(y)

A :=inf
i ¥ Z
(A+(i)KA−(i))

Then we have (see Proposition 3.1 of [Mi])

1
20
A [ L(N, d) [ 20A

and part (i) follows at once from the bounds (7.40).

APPENDIX

In two dimensions a very complete description of the phase segrega-
tion phenomenon up to the critical temperature has been obtained by Ioffe,
Schonmann [ISc] and Pfister, Velenik [PV]. However the derivation of
Propositions 3.1–3.3 is not explicitely contained in these papers. In this
appendix, we propose an alternative way to extend the L1-theory of phase
separation in two dimensions.

The L1-approach of phase coexistence relies crucially on a coarse
graining procedure and its implementation has been essentially limited to
models in dimension d \ 3 for which Pisztora’s coarse graining [Pi] could
be applied. Recently, in order to generalize the study of phase segregation
to the Pirogov–Sinai theory, a different coarse graining procedure, inde-
pendent of the specific microscopic structure of the Ising model, was
introduced [B]. In general, the validity of this new coarse graining is
limited to temperatures for which a Peierls type estimate holds. For the two
dimensional Ising model with nearest-neighbor interactions, duality implies
that such an estimate can be derived up to the critical temperature, and
therefore corse graining applies in this regime .

We describe now the coarse graining in two dimensions. The required
large deviation estimates then follow from the results in [B].

Let K=2k, let “BK=BK+Ka 0BK be the enlarged external boundary of
the box BK, a ¥ (0, 1) and let z > 0 be a parameter controlling the accuracy
of the coarse graining.
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Let x be in ŴN, K. For any e=±1, we say that the box B̂N, K(x) is
e-good if the spin configuration inside the enlarged box BK+Ka(x) is typical,
i.e.,

(P1) The box BK(x) is surrounded by at least a connected chain of
spins lying in “BK(x) and with sign uniformly equal to e.

(P2) The average magnetization MN, K(x) inside BK(x) is close to the
equilibrium value emg

|MN, K(x)− emg| [ z. (8.41)

On the mesoscopic level, each box B̂N, K(x) is labelled by a mesoscopic
phase label

-x ¥ ŴN, K, ũzN, K(x)=˛
e, if B̂N, K(x) is e-good,
0, otherwise.

For large mesoscopic boxes, the typical spin configurations occur with
overwhelming probability.

Proposition 8.1. For any b > bc and z > 0, the following holds
uniformly in N

-{x1,..., xa} ¥ ŴN, K, m+N(ũ
z
N, K(x1)=0,..., ũ

z
N, K(xa)=0) [ (r

z
K)
a, (8.42)

where rzK=exp(−cbKc) for some c ¥ ]0, 1[.

By construction the variables uN, K introduced in (3.8) are dominated
by ũzN, K for z < mg/4:

-{x1,..., xa} ¥ ŴN, K,

{uN, K(x1)=0,..., u
z
N, K(xa)=0} … {ũ

z
N, K(x1)=0,..., ũ

z
N, K(xa)=0}.

Thus Proposition 8.1 implies Theorem 3.1.
For the two dimensional Ising model (see, e.g., [PV]), a Peierls type

estimate is valid up to the critical temperature. Let C be the set of spin
configurations in {−1, 1}L such that there is a closed contour intersecting
the points {x1,..., xa} of the dual lattice (Z2)a, then the following holds

m+b, L(C) [ exp 1 −cb C
a

i=1
|xi−xi+1 |2 , (8.43)

where cb > 0 for any b > bc and xa+1=x1.
Proposition 8.1 follows from (8.43) and the argument of [B].
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